Archive for the ‘gadgets’ Category

Why Ubuntu for Android is the most important Linux project today

May 25, 2012 11 comments

I believe that the current market trends make Canonical’s Ubuntu for Android project the most important development in the recent history of Linux.

Current trends

Desktop Linux is slowly gaining market share but its advancement is excruciatingly slow. The desktop itself is loosing market share to mobile operating systems like Android and iOS primarily because Internet usage is shifting towards mobile devices. A lot of people use their mobile phone as their primary computing device and mobile phone hw is developing leaps and bounds to serve these use-cases (bigger screens, quad-core processors…etc).

Due to its touch-oriented, mobile-centric features + Google’s strong push, Android is rapidly expanding its market share among the mobile operating systems and is the most successful Linux distribution ever.

Ubuntu for Android (UfA)

Ubuntu for Android blends Android and Ubuntu in the perfect manner. Ubuntu and Android share the same Linux kernel instance so there is no dual-booting, they run in parallel. When the need arises, the user can switch to the desktop interface of Ubuntu for productive work, typically when a mouse and keyboard gets attached to the device (via a docking station, a lapdock or simply a bluetooth keyboard/mouse)

The two operating systems are completely synergistic. Some examples:

  • Ubuntu is capable of using the databases of Android (e.g. uses Android’s contact database in the email software)
  • Ubuntu uses Android’s network management
  • You keep all of your touch applications and use them on the Android interface but you also have the full desktop arsenal when you switch to Desktop Mode
  • Android’s touch applications can also be displayed on Ubuntu’s desktop interface (in windows) and you can use them with keyboard and mouse

Why Android needs Ubuntu and the Linux desktop:

Android is heavily touch oriented and cannot very well serve desktop-oriented productive use-cases (like editing a spreadsheet) even though ARM hardware is now absolutely capable to make a phone or a smartbook a primary computer.

Desktop Mode is important in order to make a mobile device a no-compromise, primary computing solution.  Today’s touch-interfaces alone can only serve content consumption.

Current Android office suites are no match for LibreOffice and the touch interface in general is no match for the Desktop when productive work is to be done. Ubuntu includes a lot of other powerful desktop productivity software in their repositories. It provides the full spectrum of sophisticated software like GIMP, Open/LibreOffice, Dia, full-blown Java applications like MindCraft, SweetHome3D, TimeslotTracker, JED, Azureus…etc. Full-featured browsing with Firefox (including plugins like AdBlock), proper, full-blown email client like Thunderbird…etc.

Desktop Mode is a weapon in the mobile OS wars and it would be a key feature against WinRT and iOS. WinRT will have no meaningful Desktop Mode but Apple may decide to migrate desktop features to iOS (from OS X). Since Apple’s new strategy of keeping older iOS devices on the market is very successful, Android  needs further innovation and distinguishing features.  This is a very good article which has similar arguments as my own.

Why Linux/Ubuntu/Canonical need Android?

Android is still spreading at an impressive rate. Apart from mobile phones, tablets and tablet/smartbook hybrids like the Transformer Prime,  it gets into smart-TVs, set-top-boxes (Mele A1000) and other devices.

Android is a well-known consumer brand now, much-much stronger than Ubuntu or Linux in general. A lot of hardware manufacturers are now releasing their devices with Android because that immediately gives market recognition and a huge selection of readily available apps.

UfA has the potential for bringing a lot of users to Ubuntu/Linux and this may be the best way to achieve a  much higher market penetration. Canonical may as well stop developing the standalone desktop and still have a growing penetration if UfA becomes successful.

The Problems

There is a set of problems ahead for UfA and Canonical.

Canonical is currently focusing to dockable mobile phones as the sole target for UfA. Although it is true that mobile phones are the highest-volume Android devices at the moment, they are not necessarily the best devices for expressing the synergy between the two operating systems. Tablet/smartbook hybrids like the Transformer Prime are a more natural target since they already have a sufficiently big screen attached and keyboard/mouse built-in the docking station part of the device. For using UfA with a mobile phone (with acceptable performance) you would need a state-of-the art mobile phone and extra accessories (like a docking station). Docking stations are not widespread at all, you practically cannot buy them with the exception of some phone models like the Atrix. With the Transformer Prime+its dock, you immediately have everything you need to use UfA, no extra expenses.

Ubuntu for Android is practically a closed-source product at the moment and it is not available for the general public. The reasoning behind this is somewhat understandable since installing UfA into an Android instance is a technically complex task and requires rooting the device + a lot of hw-specific settings and configurations (e.g. the X Server). It is really not like selecting an app from Google Play and pushing the Install button. For this reason, Canonical decided that it will try to market UfA exclusively through OEM partnerships so UfA will arrive pre-installed with your device or not at all.

The biggest problem with the above is that it limits UfA adoption severely. Since UfA was announced and presented at the beginning of this year, we should have already heard about a lot of announcements by Canonical and device manufacturers. With the obvious lack of those announcements, we have to assume that there are not enough OEMs which recognize the importance and distinguishing features of UfA. I believe this may be the problem of  chicken & egg. First, users must see UfA in action in order to recognize that they need this feature in their next phone/tablet/smartbook/set-top-box and demand it from the manufacturers. The closed-source nature of UfA also makes it impossible for the Linux community to contribute.

I strongly suggest that Canonical select some successful, high-volume mobile devices which are already on the market and release UfA for them as after-market mods. My first target would be the Transformer Prime but the HTC One X and the Samsung Galaxy S3 may also be good targets.

Partnering with the Cyanogen Mod team may be a good way to do this since they already support a wide range of devices (they are especially strong with HTC models) and established themselves as the prime producers of after-market ROMs. The cooperation may give birth to a special Cyanogen edition (let’s call it Cyanobuntu) in order to distinguish the base Cyanogen ROMs from the Ubuntu-extended editions.

Once Cyanobuntu gets sufficiently well known on a set of devices, OEMs may be much more easier to persuade about the advantages of Ubuntu for Android.

Time is of the essence

Ubuntu for Android started off at a very good time but the competition is not standing in one place either. WinRT and Windows8 (for x86) tablets are coming this fall and may prove strong contenders in the mobile computing segment. Windows8  will have both an unlimited Desktop Mode and the Metro touch interface. WinRT will have no meaningful Desktop Mode but it will ship with MS Office so it will have appeal for a set of users.

There is no time to loose, Android and Ubuntu must be ready when Windows 8 makes it début.

The secret weapon of the HP Touchpad: Linux

August 31, 2011 7 comments

The Touchpad has been discontinued by HP when the company has changed its business strategy recently (getting rid of the whole PC business arm).

A lot of people think that this was an absolutely unnecessary and sorely mistaken step, especially in light of the possible revival of the Touchpad after the PC business has been separated. Not that the Touchpad is a very competitive device in its current form. It has many glaring design mistakes by HP like missing ports (HDMI out, USB host), no expandable storage …etc but it also has many good features like its high-quality IPS-screen, Beats audio system and over-clockable processor.

WebOS also has a huge disadvantage compared to iOS and Android: very few applications, and this seems to be quite a show-stopper in the current situation (a chicken-and-egg problem).

How could HP make this product more successful without resorting to souch brutal fire-sales like the one we have recently seen?

I believe, that HP should exploit one of the big strengths of the core of WebOS: Linux.

WebOS is built on the Linux kernel and it already uses a set of Linux desktop technologies on top of it (Gstreamer, PulseAudio…etc). In a particular sense, it is a heavily customized Linux distribution (distro), like Ubuntu, which is  purposefully made incompatible with the grand armada of Linux desktop applications in order to allow applications which use strictly WebOS-only APIs.

The development strategy of allowing WebOS-only applications makes sense, since it ensures a consistent level of user experience (e.g.: all applications are properly touch-oriented) and makes it easy to enhance the foundations of WebOS without breaking applications. However, it locks HP into an uphill battle which seems impossible to win from the current situation.

Therefore, I suggest a change of development strategy, which concurrently allows significantly enhancing the number of applications available for WebOS and makes the system appealing for different use-cases.

The main component of the new strategy would be to allow running full-desktop Linux applications on the Touchpad in a so-called Desktop Mode. This Desktop Mode would automatically activate when WebOS senses a keyboard or mouse attached to the system (only Bluetooth in case of the Touchpad).

Desktop Mode would make it possible to use the TouchPad as a Linux netbook while keeping the touch oriented interface for the tablet-mode. Best of both worlds.

Desktop Mode would be a completely standard, lightweight Linux desktop  (e.g: XFCE). and would run the traditional Linux desktop applications and also display the WebOS applications in separate windows. This work environment would not be very different from the Webtop interface of the Motorola Atrix but it would not be such a limited environment. It would be a full-blown, configurable Linux desktop with all of its advantages.

Ideally, you should be able to easily switch back and forth between the Desktop Mode and the Card Interface of WebOS (possibly with a dedicated hw button on new models).

Since Desktop Mode would run every imaginable Linux desktop applications (including Java, Python and even Mono ones), it would make the TouchPad an extremely versatile mobile device. It would be more welcome in the enterprise than its competitors.

The hardware of the TouchPad (dual-core processor clocked at 1.7 Ghz and 1GB RAM) should be absolutely able to handle both Desktop Mode and the Card Interface applications concurrently. Obviously, desktop heavyweights like OpenOffice would open and run slower, but I imagine they would be fast enough to be usable. HP could ship Desktop Mode with lightweight applications (Abiword, Gnumeric…etc) while allowing the easy installation of heavy programs (at your own peril).

The best option for the Desktop Mode would be a chrooted Ubuntu instance because that would mean a very powerful application environment with a lot of readily installable aplications in its repositories (appstore). The WebOS Internals team already ship the X-Server for WebOS, so a well-working Linux desktop is absolutely doable on top of WebOS.

HP could also sell a netbook-kit as an accessory to the Touchbook, which would include a case with a built-in stand and a built-in keyboard. When the TouchPad is in the case and oriented for netbook-mode, the Desktop Mode would automatically activate.

Of course, this solution would not fully compensate the inherent weaknesses of the Touchpad but it would make it  more appealing for those people who consider netbooks as usable devices and expect their tablet to be as capable as their predecessors in mobility.

How I would make the Toshiba AC100 successful

May 9, 2011 6 comments

The AC100 is an early attempt from Toshiba to create an ARM based netbook (a smartbook) with Nvidia’s successful Tegra2 chipset.

Although, the AC100 looks like proper hardware design, it became only mildly successful. Some of the reasons may have to do with the primary operating system, Android (see my earlier article about this) but even more can be attributed to the design decisions Toshiba made.

Since these machines are now available in my home country (Hungary) at quite attractive price points (~$250 USD, some people seem to be trying to get rid of it soon after purchase) I can’t help bumping into it all the time. Since I am a gadget fan, I always have my hand trembling seeing those prices and I need to cool myself down before doing some impulse-buy, I regret later.

What could make me click on the “Buy” button?

More memory

First of all, 1-2GB of RAM instead of the measly 512MB the AC100 hosts. Why the heck tried Toshiba sell a netbook with 512MB of RAM when ALL of the Atom N450 netbooks seemed to come with 1-2 GB at that time? This amount of RAM would allow to slap Ubuntu onto the machine and not worry about running out of memory when loading up OpenOffice. Ubuntu has been demonstrated on the AC100 and even looks snappy. (see this site dedicated to Ubuntu on the AC100). Toshiba could easily put 2GB of RAM into the machine without major cost-increase.

Desktop OS and/or Android

Putting 1-2GB of RAM into the AC100 would open the gate for using a proper, netbook-oriented desktop OS which can take advantage of the form-factor. They should use Ubuntu, since that could be fixed up on this hardware in no time (especially if they purchase some consultancy from Canonical).

I don’t think that Android needs to stay on the machine but if Toshiba still thinks it is such a good idea for any user-group, they could make the AC100 dual-boot, or even better, run both OSes in parallel (2GB of RAM would make this absolutely possible). Android would be the light-and-easy OS on the device but the user could any time switch to a full Ubuntu desktop with an Android launcher icon and start using OpenOffice or other decent desktop software. The paravirtualization developed by B-labs would be an instant solution for this problem and would future proof the machine for a possible Windows8 scenario later.

More battery

The 8 hour runtime of the AC100 is decent enough but more battery-time is always welcome. The enclosure has a LOT of free/empty space under the keyboard due to the ultra-compact nature of Tegra2 and its supporting circuitry. Toshiba should again take advantage of the form-factor and add one or more extra battery docking bays under the keyboard which could extend the runtime to 16-24 hours. (Admittedly, they would make the unit weight much more but since these batteries would be optional, this decision would be up to the user. A 24-hour runtime with a 3-battery arrangement would make the AC100 extremely appealing for a large-set of users. It would be acceptable that the batteries are charged in series (so the recharge process is lengthier) so that Toshiba doesn’t have to switch to a more expensive power supply. (Although the power supply issue is probably not a serious cost factor).

What else

Of course, there would be a lot of things to be improved (more USB ports, higher-resolution display…etc) but I tried to draw up things which require smaller redesign so that an improved version could be implemented faster.

I believe the AC100 line could be made really successful and Toshiba should take steps to make this happen.

Nvidia Tegra3 launch imminent. Intel, you did this to yourself.

January 21, 2011 5 comments

Reading about the likely launch of Tegra3 at Mobile World Congress 2011 and seeing this video, one cannot help wondering how big a mistake Intel made when denied Atom hardware interfaces from Nvidia some time ago. Doing that, it practically forced Nvidia to abandon mobile-x86 solutions and pour all of its resources into Tegra/ARM development.

Nvidia has recently announced its Project Denver effort which also shows how seriously the graphics company wants to transform into an all-out computer technology company shipping mobile, desktop and server processors as well not only graphics solutions.

As a result, Intel will have to face not only AMD in the desktop/server segment but a big-name ARM technologist as well. (And several smaller ones like Nufront)

Tegra3 is not well known yet, but some guesses can be made:

  • Quad-core Cortex-A9 symmetric multi processing for generic application code execution
  • Likely at least 1Ghz top, possible up to 1.5 Ghz, dynamic frequency scaling and individual core-power-off
  • Geforce 8 or 9 level graphics core, likely with high-profile 1080p playback and encoding
  • Support for Linux and Android
  • Possibly produced on a <40nm process (GlobalFoundries 28nm anyone?)

If Nvidia can produce this on the GlobalFoundries 28nm process (or similar), we can be quite certain that the new SOC will still be viable for smartphones and will be an extremely appealing solution for tablets and Motorola Atrix-like phone/netbook/tablet modular solutions.

It will make Moorestown Atoms a very-very hard sell for Intel in the mobile phone and tablet space since the computing-power advantage of Moorestown is gone and Tegra3 will be much more efficient (being an all-out ARM solution). Android-centered OEMs will most likely go with ARM anyway and if there is a big-name producer like Nvidia with a powerful solution for their premium products, they will certainly pick that up instead of the Intel gear.

And this is only the mobile space. When Project Denver from Nvidia and Nufront start selling ARM based server SOCs, Intel will have to fight a battle in the datacenter which was absolutely home-turf so far.

All of this may not have happened at all (or would have happened years later, giving Moorestown a chance) if Intel had not chosen to deny Nvidia the hardware interfaces for building Ion2. They switched a huge threat and possible cut-throat competition in every computing segment for a very short-term gain in one segment.

Was it worth it Intel?

Motorola Atrix vs the Always Innovating Smart Book

January 15, 2011 1 comment

It is not an overstatement that the Motorola Atrix smartphone was one of the bright stars of CES 2011. An often-mentioned, breakthrough feature of the  Atrix is its modularity, namely that it can be placed into a netbook dock which gives it work-time (and battery recharge) and a desktop-like work environment (Linux based).

It is worth mentioning that this concept is not brand new and that a smaller company called Always Innovating (AI) has a similar, even more modular product: the Smart Book.

The main difference between the two products is that the computing core of the Smart Book is only a MID, not a real mobile phone like the Atrix.

The advantages of the Atrix over the Smart Book (SB):

  • The computing core of the Atrix is a real, usable mobile phone, not only a MID (IP phone as AI calls it) as with the SB. The Atrix phone is a high-end Android phone with beautiful, high-res screen (comparable to the iPhone4).
  • The computing core of the Atrix has 1GB of RAM and a powerful Tegra2 (dual-core Cortex A9) instead of the last gen, slow Cortex-A8 SOC and only 512Mb RAM in the Smart Book.
  • Computing core of the Atrix has a built-in 3G modem (with strong HSUPA and HSDPA) while the SB has only wifi radio and requires you to use an external 3G modem to connect to the internet when on-the-go.

The advantages of the Smart Book (SB) over the Atrix:

  • Much more modular. The SB has tablet jacket AND keyboard/netbook dock for the tablet jacket, while the Atrix only has a netbook jacket for the phone. The SB’s tablet jacket has a capacitive touch interface
  • The SB has real a real desktop operating system (Ubuntu) running when in desktop mode while the the Atrix has only Webtop (that only looks like a full blown desktop but it is only a Splashtop-like quick-linux OS, so it is limited to a selection of programs and is not easy to extend with apps).
  • The SB has 2 inner USB ports for replaceable 3G modem or storage key which can always ship safely within the netbook dock (no protrusions)
  • The SB’s netbook dock can be used as an independent bluetooth keyboard
  • The SB’s tablet screen can be used as a secondary display of a desktop (DisplayLink)
  • The SB has a dockable (into the talet) HDMI to USB adapter (DisplayLink)

In order to be the perfect companion, the Atrix needs to:

  • Increase its modularity by separating the netbook dock into a tablet and a keyboard stand or at least release a tablet dock as well
  • Upgrade the Webtop desktop environment to a real, powerful desktop Linux (aka Ubuntu 10.04) or at least ensure that Ubuntu can also be used in place of Webtop. It is important that the user be able to switch between Android and Ubuntu real time

The Smart Book could be a worthy contender to the Atrix by:

  • Upgrading the computing core to a dual-core OMAP4 with 1GB of speedy RAM
  • The computing core needs to be a real-word Android mobile phone with a strong HSPA data modem

I believe Motorola is in a better position to make the Atrix a one-stop computing solution but I also root for Always Innovating to make the Smart Book a successful product.

Both products clearly mark the future: modular, mobile computing for everyone.

Revised specifications for the Notion Ink Adam

October 27, 2010 7 comments

As the Adam is approaching its public release, some parts of the specification have changed compared to the originally published spec and there is now some information about the target pricing as well. Of course any of it is subject to change. Some of this information is not even corrected on the official Notion Ink website but was posted on their blog.

The bezel of the tablet has been slightly enlarged (as can be seen on the picture):

There will be four base variants of the Adam:

  • PixelQi screen, wi-fi
  • PixelQi screen, wi-fi, 3G cellular modem
  • Ordinary LCD screen, wi-fi
  • Ordinary LCD screen, wi-fi, 3G cellular modem

Both the PixelQi and the ordinary LCD screen will have capacitive, multi-touch interface and 1024×600 resolution, anti-glare coating (matte finish). This is especially useful for reading and outdoor use. PixelQi variant is usable in direct, strong sunlight.

There is no info yet on the HSDPA/HSUPA speeds for the 3G cellular modem.

For internal storage, 16 and 32 GB flash will be selectable.

Common specification elements:

  • Nvidia Tegra2 System On Chip operating at 1Ghz (dual-core ARM Cortex-A9)
  • 1 GB of RAM (DDR2, 667Mhz)
  • WLAN 802.11 b/g/n (previously it was not known whether it will have “n” as well)
  • Bluetooth 2.1 EDR with A2DP (for stereo bluetooth headsets)
  • External loudspeakers (expected to be good quality for enjoyable video playback), external microphone, headphone and microphone jack
  • 3.2 Mpixel swivel camera which will be usable for both taking photos and video calls
  • 2 normal size USB ports and 1 mini-USB port
  • HDMI output
  • microSD card slot
  • Docking port
  • 3-axis accelerometer
  • Ambient light sensor and automatic screen backlight adjustment (this will have a big, positive impact on the battery runtime)
  • Manual LCD back-light switch (most useful for the PixelQi variant)
  • Standalone GPS chip and antennea (with support for A-GPS quick positioning). The Adam will be capable for navigation without 3G network coverage
  • Sound volume keys
  • Backside trackpad (this is an interesting part, check the videos on Youtube)
  • 24 Wh battery (3-cell configuration). Expected runtime is 15 hours for wifi browsing (recently reported on the blog), 140 hours of listening to audio, more than a week standby
  • Operating system is Android Froyo (2.2) with a custom, tablet-enhanced user interface

It is not yet known whether the Adam will have a digital compass (for better navigation and augmented reality apps). It has been asked on the Notion Ink blog comments but no confirmation yet. It would be very much logical to have it in a machine with this hardware level but the long-time omission from the specs indicates otherwise.

Target end-user prices are between $400 and $500 for the 4 variants in the US. Their target is to keep even the fully loaded variant below the price of the entry level iPad.

Availability/release of the Adam is not finalized, but the Early Access Program winners (developers) are expected to have their machines shipped around November 15. Public release should happen soon after in order to make the Adam available for the Christmas shopping season.



Official Linux development kit for Tegra2

July 13, 2010 Leave a comment

It’s been a while since I reported that Nvidia would support Linux on the Tegra2 development board. At that time, “support” meant an internal, non-public OS image for Nvidia developers and a promise  for an official, public Linux Development Kit (LDK) to be released “soon”. Unfortunately, things were only crawling along since then so some of the prospective Tegra2 developers got quite frustrated with the lack of an official LDK for this advanced ARM hardware.

Finally, Nvidia developers caught up with the demand and released the first version of the official LDK dubbed as Linux for Tegra (L4T). The announcements on the Tegra2 developer forums is here.

Now, we can hope that this development kit can become the basis of targeted Linux distributions for the upcoming Tegra2 based machines such as the Notion Ink Adam and the Boxee Box.

I, for one, will only buy a Tegra2 tablet or smartbook if there is realistic chance that I will see a well working, full-Linux distro on it sometime soon. I may use Android on them for a while but I certainly think that such powerful hardware demands a proper, full-Linux operating system on it. I will be happy to use MeeGo, Ubuntu Unity or some other touch-oriented desktop-GUI and its widgets but absolutely expect to run OpenOffice, Firefox and other powerful apps when I attach a keyboard to the machine.

Categories: gadgets, linux, smartbooks, ubuntu

Toshiba AC100 smartbook: with Android but why?

June 27, 2010 24 comments

The AC100 smartbook, recently announced by Toshiba, has some intriguing features, worth to blog about. First of all, it is built around Nvidia’s Tegra2 system-on-chip (SOC). The Tegra2 is a powerful, ARM SOC with two generic application processing cores and integrated media cores (AV decoding/encoding…etc). The AC100 is the most promising netbook form-factor machine with Tegra2 to date. (Of course there are a lot of Tegra2 based systems announced, but those are mostly tablets). Smartbooks already on the market (HP Airlife, Sharp Netwalker), suffer from lack of performance (due to a combination of underpowered, single-core, Cortex A8-level SOCs and/or slow RAM) and are not considered as breakthrough products (at least not in the blogosphere).

The AC100 has a chance to be a successful product in the netbook/smartbook category. Although the hardware has some weaknesses (only 512Mb of RAM instead of at least 1Gb, only one USB port, very small resolution LCD), it has a solid brand name written on it, and the Nvidia foundations are appealing.

I expect the factory installed Android 2.1 perform acceptably but I don’t think it is the ideal OS for this device. Android’s touch oriented GUI won’t shine on the AC100 simply because the machine lacks a touch-screen and Android’s software selection is simply no match for this hardware.

Laptop-like smartbooks with keyboards (like the AC100) are much better served with a full-desktop Linux due to the fact, that on these devices, buyers will expect full-fledged applications like OpenOffice, Thunderbird, Firefox…etc. Android would be very limiting for the use cases expected from a netbook/smartbook (editing complex text documents, spreadsheets, using a full-fledged browser, email client…etc). Tegra2 with 1Gb of fast RAM could run OpenOffice and other desktop software with good performance. Instead, it will be reduced to run mini, Android versions of the real stuff (what is available for Android instead of OO and such). I believe, at this point, Android is much more suitable for content consumption, than content creation. In contrast, the AC100 hardware is definitely suitable for the latter and many potential buyers will find Android as insufficient for their purposes.

I just hope that Nvidia & Toshiba get their act together and quickly release an Ubuntu variant for Tegra2 based systems because I am afraid the OS part of their AC100 offering is much weaker than the hardware. The Android 2.1 can remain the factory default but the easy install option of a solid, full-desktop OS should be provided (Ubuntu/ARM is just that). I would also suggest increasing the amount of RAM and the USB ports in order to make the product directly comparable to Atom netbooks (and not be ashamed after the comparison). With these improvements, Toshiba could create a very strong contender for the business of those who are waiting for a powerful smartbook or tablet and not willing to compromise with Apple’s offering.

Are smartbooks and Linux meant for each other?

February 13, 2010 8 comments

Smartbooks are an upcoming mobile computing device category built around ARM’s Cortex A8 and A9 line of processors. These devices are awaited with great anticipation because they promise a mixture between smartphone features (ultra-portable, 3G connected, always-on) and the functionality of netbooks/laptops (>9″ screen, seamless web browsing, laptop-like computing performance…etc) at a price point lower than that of current netbooks (sub-$300). Some smartbooks will arrive in the tablet form factor, some of them will come in the more traditional laptop form factor. All of them are expected to be comparable to netbooks in processing power (see this and this).

It is an intriguing question whether smartbooks will widen Linux adoption and erode the often criticised monopoly of Windows on pc-like computing devices.

Since the desktop line of Windows currently doesn’t run on ARM processors, we can exclude XP/Vista/7 from the list of likely contenders as smartbook operating systems. Windows 7 successors are currently not planned to be ported to ARM and even that wouldn’t be a complete solution since Windows applications will have to be ported as well (a very wide, close-sourced ecosystem).

Microsoft has Windows CE for ARM processors. Windows CE has already been deployed several smartbook-like devices (e.g. the original Psion Netbook) so it is definitely a contender in this market. However, WinCE 6.5 currently doesn’t support multiple or multi-core processors  and more than 512Mb of RAM so advanced ARM SOCs like the Tegra2 would be very much limited by this OS. Solving multi-processor support will require significant investment from Microsoft. Incompatibility with the desktop line of Windows is also a severe limiting factor for WinCE. WinCE devices cannot be sold on the appeal of general Windows-compatibility, the user will not be able to install Windows applications onto the device.

Linux on the other hand has a very good technical background on ARM. It has no limitations for processing cores and operating memory and has targeted distributions for this architecture. Android is an outstanding example but several well-known distributions – like Ubuntu – have ARM ports in addition to their x86 base edition. Also, due to the fact that most of the Linux applications are open-source, they are at least possible to port, so we can expect the full usual complement of desktop Linux applications to show up on an ARM Linux distribution when the need becomes visible for them.

Technical factors aside, there is always the argument for Linux: being free . This may be important with smartbooks due to the very low targeted price point which doesn’t tolerate even moderate OS licensing fees (like $50/unit). So unless Microsoft gives Windows CE for practically free, Linux has the advantage here.

Since Windows CE has practically no advantages over Linux on ARM (in fact quite the opposite), Linux has a fairly good chance to be deployed on smartbooks as the primary operating system shipping with the device. Now, we can get into specifics. What kind of Linux and what kind of GUI?

Google’s Android is a very special Linux distribution. It’s touch-oriented GUI is simple and usable but it doesn’t run X-Windows so lacks the usual full-fledged Linux applications (Android applications are specifically written for the Dalvik virtual machine and its APIs in Java.) With this in mind, and considering the current frenzy around Android, I expect it to be deployed heavily on smartbook tablets. This form-factor is ideal for use cases in which full-fledged desktop applications are not necessary (e.g.: a web tablet with media player capabilities). More advanced Linux users will likely be able to install a full desktop Linux onto their tablets but the average consumer will be satisfied with Android.

However, laptop-like smartbooks with keyboards are better served with a full-desktop Linux like Ubuntu due to the fact, that on these devices, buyers will expect full-fledged applications like OpenOffice, Thunderbird, Firefox…etc. Android would be very limiting for the use cases expected from a netbook/smartbook (editing complex text documents, spreadsheets, using a full-fledged browser, email client…etc). I believe, the exact GUI environment is not really important for this kind of smartbooks although some netbook specific desktop environments (like Ubuntu Netbook Remix and Moblin) may be more efficient for smartbook models with low-resolution screens (below 1024×768).

My conclusion is that every kind of smartbook device can be put to its full potential with a properly customized Linux variant. Manufacturers seem to be aware of this since most of the already announced products are known to ship with Android (e.g.: Notion Ink Adam) or hinted to ship with some kind of Linux (e.g.: Lenovo Skylight).

Categories: gadgets, java, linux, smartbooks, ubuntu

Is the iPad good for Linux?

January 29, 2010 6 comments

Regardless of how severe limitations Apple imposes on the iPad, we can expect it to be reasonably successful. I don’t think it will duplicate the success of the iPhone but due to Apple’s strong marketing and its own technical merits, it will sell in significant numbers.

How will this affect Linux and the upcoming tablets based on it?

When I say Linux, I mean Google’s Android and Chrome operating systems as well because they are all based on Linux.

I believe the iPad will have a positive effect on Linux adoption. The bigger its success will be, the bigger help it will provide to Linux. Now, I agree that this sounds controversial first, because the iPad runs Apple’s own iPhone OS which is a competitor to Linux but the logic gets more obvious if we think about the biggest hurdle for Linux adoption: compatibility with Windows.

When buying computer-like devices, people still expect compatibility with Windows and windows applications. Microsoft’s monopoly of the desktop makes it hard for alternative OS-es to make headway. The iPhone made a dent in this cornerstone because it proved that it can serve as a viable, ultra-mobile internet device, a role played by, overwhelmingly, Windows laptops before. The iPhone created a huge ecosystem of software developers/publishers completely independent from Microsoft and Windows. The iPad will continue this trend and will highlight this market in a much more meaningful manner.

People buying the iPad will be aware that their device will never run Windows programs yet they will buy it anyway. Their example will further destroy the myth that a computer needs Windows to serve useful purposes. The iPad, due to its size, is more of a “computer” in the eyes of the people than an iPhone, regardless of the technical similarities.

After the iPad successfully lowers resistance to non-Windows computing devices, Linux will have a much better chance of competing in the mobile computing market and, eventually, on the desktop.

Categories: gadgets, linux, ubuntu